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Program 
Tuesday, May 2, 2023 
 
13:00 - Registration 
14:00 - Opening (Rebecca Wade, Tilmann Gneiting) 
 
Session 1 (Chair: Frauke Gräter) 
 
14:15 - Olexandr Isayev (Department of Chemistry, Carnegie Mellon University, 

Pittsburgh PA, USA)  
Discovering chemistry with a transferable reactive machine learning 
potential (25 min talk + 15 min Q&A) 

14:55 - Tristan Bereau (University of Amsterdam, Netherlands) 
  The role of coarse-graining in molecular discovery (25 min talk + 15 min 

Q&A) 
15:40 - Gerhard Stock (Institute of Physics, Univ. Freiburg, Germany) 

Correlation-based feature selection to identify functional dynamics in 
proteins (15 min talk + 5 min Q&A) 

 
16:00 - Coffee Break 
 
Session 2 (Chair: Prof. Dr. Andreas Dreuw) 
 
16:30 - Sereina Riniker (ETH Zürich, Switzerland) 

Learning Physical Interactions for Molecular Dynamics Simulations (25 min 
talk + 15 min Q&A) 

17:10 - Yousung Yung (Seoul National University, S. Korea)  
Machine-Enabled Chemical Structure-Property-Synthesizability Predictions 
(25 min talk + 15 min Q&A) 

17:50 - Kirill Zinovjev (Universidad de Valencia, Spain) 
Electrostatic embedding of Machine Learning potentials (15 min talk + 5 
min Q&A) 

 
18:15 - Group Photo (Speakers) 
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Wednesday, May 3, 2023 
 
Session 3 (Chair: Rebecca Wade) 
 
09:00 - Chris Oostenbrink (University of Natural Resources and Life Sciences, 

Vienna (BOKU), Austria) 
Buffer region neural networks: A buffered scheme for polarizable QM/MM 
simulations with machine-learning (25 min talk + 15 min Q&A) 

09:40 - Jochen Blumberger (University College London, UK) 
Electron and Proton Transfer in Functional Materials from Neural Network 
Potentials (25 min talk + 15 min Q&A) 

10:20 - Giorgia Brancolini (CNR, Modena, Italy) 
 Combining Neural Networks, Enhanced Sampling simulations and FRET 
technique to study the Structure and Dynamics of of Intrinsically Disordered 
Proteins of Therapeutic Value (15 min talk + 5 min Q&A) 

 
10:40 - Coffee Break 
 
Session 4 (Chair: Fred A. Hamprecht) 
 
11:20 - Rocio Mercado (Chalmers University of Technology, Göteborg, Sweden) 

Deep generative models for biomolecular engineering (25 min talk + 15 min 
Q&A) 

12:00 - Tarak Karmakar (Indian Institute of Technology, Delhi, India)  
Modelling monolayer protected atomically precise nanoclusters - self-
assembly and interactions with biomolecules (15 min talk + 5 min Q&A) 

12:20 - Roundtable Discussion (40 min) 
 
13:00 - Poster Session & Lunch 
 
14:20 - Group Photo (All participants) 
 
Session 5 (Chair: Ullrich Köthe) 
 
14:30 - Markus Lill (University of Basel, Switzerland) 

Fusion of Deep Learning and Molecular Modelling for Drug Design 
Applications (25 min talk + 15 min Q&A) 

15:10 - Christine Peter (Department of Chemistry, University of Konstanz, 
Germany) 
Machine learning in biomolecular simulations: from characterizing 
conformational free energy landscapes to scale (25 min talk + 15 min Q&A) 

15:50 - Jeffrey Vanhuffel (Technische Universität Darmstadt, Germany) 
Recruiting Soft Actor-Critic Agents for de-novo discovery of covalent ligands 
for modulation of transient pockets (15 min talk + 5 min Q&A) 
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16:10 - Coffee Break 
 
 
Session 6 (Chair: Ganna (Anya) Gryn’ova) 
 
16:40 - Philip Schwaller (EPFL, Switzerland) 

AI-Accelerated Organic Synthesis (25 min talk + 15 min Q&A) 
17:20 - Renana Poranne (Technion, Haifa, Israel) 

New Representations Enable Interpretable Machine and Deep-Learning for 
Polycyclic Aromatic Systems (25 min talk + 15 min Q&A) 

18:00 - Vivin Vinod (Constructor University, Bremen, Germany) 
Multi-Fidelity Machine Learning for Quantum Chemistry (15 min talk + 5 min 
Q&A) 
 

19:30 - Workshop Dinner Restaurant 'S' Kastanie, Elisabethenweg 1 Heidelberg 
(leave the Villa Bosch Studio at 19:00) 
 
Thursday, May 4, 2023 
 
Session 7 (Chair: Marcus Elstner) 
 
09:00 - Heather Kulik (Massachusetts Institute of Technology, Boston, USA) 

Machine learning tools for discovery in open shell transition metal 
chemistry (25 min talk + 15 min Q&A) 

09:40 - Kai Riedmiller (HITS) 
Predicting reaction barriers of hydrogen atom transfer in proteins (15 + 5 
min Q&A) 

10:00 - Robert Strothmann (Fritz-Haber-Institut, Max-Planck-Gesellschaft, Berlin) 
Machine Learning Assisted Photoswitch Design: A Multi-Property 
Optimization Perspective (15 min talk + 5 min Q&A) 
 

10:20 - Coffee Break 
 
Session 8 (Chair: Pascal Friederich) 
 
10:50 - Mario Barbatti (Aix Marseille University, CNRS, ICR, France) 

Nonadiabatic dynamics in the long timescale: the next challenge in 
computational photochemistry (25 min talk + 15 min Q&A) 

11:30 - John Gardner (University of Oxford, UK) 
Synthetic Data for Atomistic Machine Learning (15 + 5 min Q&A) 

11:50 – Roundtable Discussion and Round up (40 min) 
 
12:30 - Lunch 
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Nonadiabatic dynamics in the long timescale: the next 
challenge in computational photochemistry 

Prof. Dr. Mario Barbatti (mario.barbatti@univ-amu.fr)  

Aix Marseille University, CNRS, ICR 

Nonadiabatic dynamics simulations in the long timescale (longer than 100,000 integration 
timesteps) are the next challenge in computational photochemistry.1 In this talk, we will 
explore the scope of what we expect from methods to run such simulations: they should 
work in full nuclear dimensionality, be general enough to tackle any molecule, and not 
require unrealistic computational resources. We will examine the main methodological 
challenges we should venture into to advance the field, including the computational costs 
of the electronic structure calculations, stability of the integration methods, the accuracy 
of the nonadiabatic dynamics algorithms, and software optimization. Based on 
simulations designed to shed light on these issues, we show how machine learning may 
be a crucial element for long-timescale dynamics, either as a surrogate for electronic 
structure calculations or aiding the parameterization of model Hamiltonians. We also 
show that conventional methods for integrating classical equations should be adequate 
for extended simulations up to 1 ns and that surface hopping agrees semi-quantitatively 
with wavepacket propagation in the weak-coupling regime. Finally, we describe our 
optimization of the Newton-X program to reduce computational overheads in data 
processing and storage. 

 [1] Mukherjee et al. Philos Trans R Soc A 2022, 380, 20200382. (DOI: 10.1098/rsta-2020-
0382) 
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The role of coarse-graining in molecular discovery 
Dr. Tristan Bereau (t.bereau@uva.nl)  

University of Amsterdam 

Advanced statistical methods are rapidly impregnating many scientific fields, offering new 
perspectives on long-standing problems. In materials science, data-driven methods are 
already bearing fruit in various disciplines, such as hard condensed matter or inorganic 
chemistry, while comparatively little has happened in soft matter. I will describe how we 
use multiscale simulations to leverage data-driven methods in soft matter. We aim at 
establishing structure-property relationships for complex thermodynamic processes 
across the chemical space of small molecules. Akin to screening experiments, we devise 
a high-throughput coarse-grained simulation framework. Coarse-graining is an appealing 
screening strategy for two main reasons: it significantly reduces the size of chemical 
space and it can suggest a low-dimensional representation of the structure-property 
relationship. To illustrate these aspects, I will focus on a complex biomolecular system: 
the selective binding of small molecules to cardiolipin in mitochondrial membranes. A 
multiscale compound search helps us identify clear design rules for highly selective 
molecules. It also eases the identification of compounds for experimentation in vitro and 
in vivo. 
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Electron and Proton Transfer in Functional Materials from 
Neural Network Potentials 

Prof. Dr. Jochen Blumberger (j.blumberger@ucl.ac.uk)  

University College London 

Machine learning approaches have changed the way we carry out molecular 
computations and the field of electron and proton transfer is no exception. I will present 
two examples where ML approaches have helped us to accelerate and/or improve the 
accuracy of traditional computational chemistry methods. In the first example we show 
how committee neural networks (c-NNPs) can be used to accelerate free energy 
calculations at ab-initio molecular dynamics-level by 3-4 orders of magnitude with little 
training data and negligible loss in accuracy. Applications to the calculation of pKa values 
at transition metal oxide/liquid water interfaces, where classical force fields struggle, will 
be presented. In the second example I will show how the c-NNP approach can be used to 
estimate electronic Hamiltonians, specifically electronic coupling matrix elements, in a 
site or diabatic basis, for simulation of charge transport in molecular materials. We find 
that pure ML methods are inferior to our ̀ `traditional" physics-based methodology but they 
can be used to improve the latter in a delta-ML scheme. Open questions and challenges 
will be discussed. 
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Combining Neural Networks, Enhanced Sampling simulations 
and FRET technique to study the Structure and Dynamics of 

Intrinsically Disordered Proteins of Therapeutic Value 
Dr. Giorgia Brancolini (giorgia.brancolini@nano.cnr.it) 

CNR, Modena, Italy 

Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in 
protein-protein and protein-ligand interaction. Many are involved in cancer, aging and 
neurodegenerative diseases. Their structure and dynamics is intimately related to their 
interactions with binding partners. Because IDPs are inherently flexible and do not have a 
single conformation, structural ensembles offer more useful representations than individual 
conformations. The aim of this work is to use Enhanced Molecular Dynamics simulations in 
conjunction with Neural Network (EncoderMap) and FRET technique to achieve a deeper 
understanding of the structure and dynamics of a specific IDPs, namely Heat Shock Protein 
B8 (HSPB8) and its mutant K141E involved in neurodegenerative diseases.1 The workflow is 
applied to the proteins conformational ensembles in solution and at different salt 
concentrations to analyze the effect of ionic strength. HSPB8 variants are also studied in the 
presence of paroxetine, a small molecule found in antidepressant drugs that was shown to 
have a high affinity for HSPB8 and to partially restore the chaperone activity in the mutated 
K141E variant. These studies provide the first 3D structural characterization of HSPB8 and 
reveal the effects of the pathogenic K141E mutation on its conformational ensembles offering 
the possibility of rationalize it.  

Also featured as poster on the stand № 35 
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Synthetic Data for Atomistic Machine Learning 
John Gardner (gardner.john97@gmail.com)  

University of Oxford, UK 

Chemical structures obtained from MD simulations driven by existing machine-learned 
potentials are relatively inexpensive to generate as compared to using as compared to 
first-principles methods. We have created and open-sourced a large (22.9 million atom) 
and synthetic dataset of carbon structures. In this contribution, I present a series 
experiments we have performed using this dataset [1]: - We compare the ability of various 
regression model classes (neural networks, deep kernel learning and gaussian process 
regression) to predict the synthetic, local energies as labelled by the ML potential. - We 
use the dataset to explore various hyperparameter settings for GPR in the limit of large 
amounts of training data. - We investigate the learning of these synthetic energies as a 
pre-training task for neural-network models. This exhibits positive transfer when learning 
to predict per-cell energies as labelled by DFT. - We combine supervised and unsupervised 
learning to guide the creation of chemical maps by extracting hidden layer representations 
from NN models.  

[1] Synthetic data enable experiments in atomistic machine learning, J.L.A. Gardner, Z. 
Faure Beaulieu and V.L. Deringer, 2022. https://doi.org/10.48550/arXiv.2211.16443. 

  



 11 

Discovering chemistry with a transferable reactive machine 
learning potential 

Prof. Olexandr Isayev (olexandr@cmu.edu)  

Department of Chemistry, Carnegie Mellon University, Pittsburgh PA 

Deep learning is revolutionizing many areas of science and technology, particularly in 
natural language processing, speech recognition, and computer vision. In this talk, we will 
provide an overview of the latest developments in machine learning and AI methods and 
applications to the problem of drug discovery and molecular design at Isayev’s Lab at 
CMU. We identify several areas where existing methods have the potential to accelerate 
computational chemistry research and disrupt more traditional approaches. Recently, we 
developed a general reactive ML potential through unbiased active learning with a 
nanoreactor molecular dynamics-inspired sampler. The resulting potential (ANI-1nr) is 
then applied to study five distinct condensed-phase reactive chemistry problems: carbon 
solid-phase nucleation, graphene ring formation from acetylene, biofuel additives, 
combustion of methane, and the spontaneous formation of glycine from early earth small 
molecules. In all studies, ANI-1nr closely matches experiments and/or previous studies 
using traditional model chemistry methods without needing to be refit for each 
application, which enables high-throughput in silico reactive chemistry experimentation. 
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Machine-Enabled Chemical Structure-Property-
Synthesizability Predictions 

Prof. Yousung Jung (yousung@gmail.com)  

Seoul National University 

This Discovery of new molecules and materials with desired properties is a practical goal 
of chemical research. A promising way to significantly accelerate the latter process is to 
incorporate all available knowledge and data to plan the synthesis of the next materials. 
In this talk, I will present several directions to use informatics and machine learning to 
efficiently explore chemical space. I will first describe methods of machine learning for 
fast and reliable predictions of materials and molecular properties. With these tools in 
place for property evaluation, I will then present a few generative frameworks that we have 
recently developed to allow the inverse design of molecules and materials with optimal 
target properties, either in the compositional space or structural space. One general 
challenge in digital discovery is that many of the molecules and materials that are 
computationally designed are often discarded in the laboratories since they are not 
synthesizable. I will thus lastly spend some time to talk about the synthesizability of 
molecules and materials, either by predicting the synthesis pathways (retrosynthesis) or 
chemical reactivity. Several challenges and opportunities that lie ahead for further 
developments of accelerated chemical platform will be discussed. 
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Modelling monolayer protected atomically precise 
nanoclusters - self-assembly and interactions with 

biomolecules 
Prof. Tarak Karmakar (tkarmakar@iitd.ac.in)  

Indian Institute of Technology, Delhi 

Monolayer ligand Protected atomically precise nano-Clusters (MPCs) have gained 
enormous popularity due to their unique properties and versatile applications in bio-
imaging, as sensors and effective drug carriers.[1] Understanding the structure and 
dynamics of these molecule-like nanoclusters is of paramount interest in designing new 
MPCs, tuning their physical properties, and expanding their applicability in diverse areas.[2] 
Using molecular dynamics simulations augmented with enhanced sampling methods, we 
have investigated the self-assembly of MPCs in solutions and the dynamics of MPCs in 
solid phases.3 Furthermore, to explore the capability of MPCs as drug carriers, we studied 
their interactions with an anticancerous peptide-based drug, Melittin, and subsequently, 
we investigated the permeation process of a MEL-bound MPC through a tumor cell 
membrane.[4,5] In my presentation, I will discuss results related to these aspects of MPCs 
and their bio-applications. Although all simulation models in our study so far are described 
atomistically, our future works would be on developing accurate coarse-grained models 
for MPCs, which would allow us to increase the system size and sample the long 
timescale processes.  

References: (1) Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal 
Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chemical Reviews 
2016, 116, 10346–10413. (2) Malola, S.; H ̈akkinen, H. Prospects and challenges for 
computer simulations of monolayer-protected metal clusters. Nature Communications 
2021, 12 (3) Tiwari, V; Karmakar, T. Understanding Molecular Aggregation of Ligand-
protected Atomically-Precise Metal Nanoclusters, 2023 (submitted) (4) Tiwari, V; Garg, S.; 
Karmakar, T. Insights into the Interactions of Peptides with Monolayer-Protected Metal 
Nanoclusters, ACS Applied Biomaterials, 2023 (5) Tiwari, V; Garg, S.; Karmakar, T. 
Monolayer-Protected Metal Nanoclusters as Effective Drug Carriers, 2023 (in preparation) 
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Machine learning tools for discovery in open shell transition 
metal chemistry 

Prof. Heather Kulik (hjkulik@mit.edu)  

Massachusetts Institute of Technology 

I will discuss our efforts to use machine learning (ML) to accelerate the computational 
tailoring and design of transition metal complexes and metal-organic framework (MOF) 
materials for catalysis. One limitation in a challenging materials space such as open shell, 
3d transition metal chemistry is that ML models and ML-accelerated high-throughput 
screening traditionally rely on density functional theory (DFT) for data generation, but DFT 
is both computationally demanding and prone to errors that limit its accuracy in predicting 
new open shell transition metal complexes. I will describe how we have leveraged 
consensus in DFT screening as well as gone beyond DFT by developing a "recommender" 
that achieves higher level accuracy to overcome some of these challenges. I will also 
describe how we have paired these ML models with efficient global optimization to 
accelerate searches for candidate materials by 1000 fold. Finally, time permitting, I will 
discuss our efforts in direct learning of experimental data as a way to bypass limitations 
of simulation in the prediction of metal-organic framework stability. 
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Fusion of Deep Learning and Molecular Modelling for Drug 
Design Applications 

Prof. Dr. Markus Lill (markus.lill@unibas.ch)  

University of Basel 

Deep learning has started to play a significant role in many scientific fields. In drug 
discovery, deep learning will have an increasing impact in the near future, showcased by 
the use of recently pioneered deep neural network approaches for protein-structure 
prediction, synthesis prediction, and de novo molecular design. In this presentation, I will 
delve into our efforts to integrate physicochemical models and our current understanding 
of protein-ligand interactions with deep neural network techniques. A novel multiscale 
approaches for molecular docking will be discussed. Using deep learning in the pose-
generation phase makes time-consuming sequential search algorithms obsolete. Initial 
coarse-graining of the protein binding site with full-atomistic reconstruction of the docked 
complex facilitates the incorporation of protein flexibility. This talk will also explore the 
development of novel free energy calculation methods. A combination of targeted free 
energy perturbation theory with normalizing flows overcomes the time-consuming 
stratification process of standard free energy calculations. Incorporation of dummy 
atoms extends those ideas to the relative free energy calculation of molecules with 
different number of atoms. 
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Deep generative models for biomolecular engineering 
Prof. Rocío Mercado (rocom@chalmers.se) 

Chalmers University of Technology, Gothenburg 

AI is transforming our approach to biomolecular engineering. This includes the 
development of generative and predictive tools that can learn from biochemical data, such 
as molecular structures, chemical reactions, and biomedical data. While AI can be applied 
to a range of molecular engineering tasks, one ideal area is de novo molecular design. De 
novo design is the concept of designing molecules with desired properties from scratch 
to minimize experimental screening and is poised to allow scientists to traverse chemical 
space more efficiently in search of optimal molecules by delegating error-prone decisions 
to computers. In drug development, de novo design methods can aid medicinal chemists 
in the design and selection of drug candidates, with the added advantage that they can 
learn from datasets of billions of molecules in minutes and be constantly updated with 
new data. Deep molecular generative models are a particular approach to de novo design; 
they use deep neural networks to generate new molecules in silico, and work by proposing 
node and edge modifications to an initial graph structure to generate compounds 
predicted to achieve a specific property profile. Such models can be applied to the 
engineering of a range of therapeutic modalities, from small molecules to proteins. In this 
talk, I will discuss the development of deep generative models for various bimolecular 
engineering tasks relevant to early-stage drug discovery. These include: a generative 
model for synthesizability-constrained molecular design, a reinforcement learning 
framework for molecular graph optimization, and recent applications from our group to 
the design of large modalities for targeted protein degradation.  
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Buffer region neural networks: A buffered scheme for 
polarizable QM/MM simulations with machine-learning 

Prof. Dr. Chris Oostenbrink (chris.oostenbrink@boku.ac.at)  

University of Natural Resources and Life Sciences, Vienna (BOKU) 

In hybrid quantum mechanics / molecular mechanics (QM/MM) approaches, the 
molecular system is partitioned into regions that are treated at different levels of theory. 
At the interfaces between these regions, artifacts may occur. We have recently introduced 
a buffered embedding scheme, in which a buffer region between the inner (QM) and outer 
(MM) region is defined for which the interactions are computed both at the QM and MM 
level. This comes at the cost of introducing a second QM-calculation at every timestep of 
the simulation. The use of neural networks to describe molecular potential energies, 
allows for an elegant solution to this problem. We train a neural network directly on the 
difference between the two QM calculations, ensuring that the network reproduces the 
QM-interactions of the inner region, with itself and with the buffer region as well as the 
polarization of the buffer region due to the inner region. Any remaining artifacts largely 
cancel in the trained differences and are far removed from the inner region of interest. The 
use of the Buffer Region Neural Network (BuRNN) approach, furthermore, allows us to 
apply alchemical free-energy calculations at the QM-level of theory. 
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Machine learning in biomolecular simulations: from 
characterizing conformational free energy landscapes to 

scale bridging 
Prof. Dr. Christine Peter (christine.peter@uni-konstanz.de)  

Department of Chemistry, University of Konstanz 

Enhanced sampling methods, multiscale approaches, and improved simulation models in 
combination with ever growing computational power have given us access to 
unprecedented system sizes and simulation times and have led to a massive increase in 
the amount of simulation data being produced. Thus, processing and analyzing 
exceedingly large high-dimensional data sets has become one of the major challenges. I 
will show how multiscale approaches in combination with advanced analysis methods 
can be used to investigate and characterize the structural variability of biomolecular 
systems, in particular multidomain proteins and protein conjugates. Modern machine 
learning approaches are utilized to identify, compare, and classify relevant conformational 
states, to provide insights into the decisive features hidden in these high dimensional 
simulation data and to guide their interpretation with respect to experiments. Using 
efficient dimensionality reduction techniques we obtain low dimensional representations 
of the sampling which can be interpreted as conformational free energy landscapes. 
These low dimensional representations enable us to assess the consistency of the 
sampling in different models, to go back and forth between simulation scales or compare 
the conformational behavior of different systems. 
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New Representations Enable Interpretable Machine and 
Deep-Learning for Polycyclic Aromatic Systems 

Prof. Renana Poranne (rporanne@technion.ac.il)  

Technion, Haifa, Israel 

Polybenzenoid hydrocarbons (PBHs) – molecules made up of multiple benzene rings – 
are the quintessential polycyclic aromatic species. In addition to their importance for a 
variety of functionalities, these molecules serve as model systems for the much larger 
and more heterogeneous space of polycyclic aromatic systems and provide the 
opportunity to investigate the effect of annulation geometry on different molecular 
properties. The structure-property relationships of PBHs have both conceptual and 
practical implications; understanding them can enable design of new functional 
compounds and elucidation of reactivity in a broader context. We interrogated these 
compounds using a combination of traditional computational techniques, including 
characterization of their aromatic character in the S0 and T1 states (described with the 
NICS metric), their spin density in the T1 state, and their S0—T1 energy gaps. Regularities 
were revealed that allowed for simple and intuitive design guidelines to be defined.1 To 
verify these guidelines in a data-driven manner, we generated a new database – the 
COMPAS Project2– which contains the calculated structures and properties of all PBHs 
consisting of up to 11 rings. Further, we developed and implemented two types of 
molecular representation to enable machine- and deep-learning models to train on the 
new data: a) a text-based representation3 and b) a graph-based representation.4 In 
addition to their predictive ability, we demonstrate the interpretability of the models that 
is achieved when using these representations. The extracted insight in some cases 
confirms well-known “rules of thumb” and in other cases disproves common wisdom and 
sheds new light on this classical family of compounds. In addition to corroborating 
domain-experts’ interpretation, the different models also highlight additional relationships 
that are harder for the human eye to discern. 
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Predicting reaction barriers of hydrogen atom transfer in 
proteins 

Kai Riedmiller (kai.riedmiller@h-its.org) 

HITS 

Hydrogen atom transfer (HAT) reactions are important reactions in many biological 
systems. As these reactions are hard to observe experimentally, it is of high interest to 
shed light on them using simulations. Here, we present a machine learning model for the 
prediction of activation energies of HAT reactions. As the inference speed is high, this 
model enables evaluations of many chemical situations in rapid succession. It is trained 
on energy barriers calculated using hybrid density functional theory. We built and 
evaluated the model in the context of HAT in Collagen, but the same workflow can also be 
applied to HAT reactions in other biological or synthetic polymers. The access to fast 
predictions of HAT energy barriers, when combined with molecular dynamics in a kinetic 
Monte-Carlo scheme, paves the way towards reactive simulations. 

Also featured as poster on the stand № 28 
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Learning Physical Interactions for Molecular Dynamics 
Simulations 

Prof. Dr. Sereina Riniker (sriniker@ethz.ch)  

ETH Zürich 

From simple clustering techniques to sophisticated neural networks, the use of machine 
learning has become a valuable tool in many fields of chemistry in the past decades. Here, 
we describe different ways in which we explore the use of machine learning (ML) for 
predict physical interactions between particles in molecular dynamics (MD) simulations 
in order to improve their accuracy. In classical MD simulations, the physical interactions 
between atoms are described with an empirical force field. This involves a large number 
of parameters for each molecule, which are fitted to quantum-mechanical (QM) or 
available experimental data. There is a need for more accurate and general force fields. 
In this context, we demonstrate how ML approaches can aid in force-field development, 
from multipole prediction to generalized parametrization. In the second part, we explore 
the use of ML for increasing the speed and accuracy of QM/MM MD simulations. 
Concepts such as ∆-learning and different network architectures are explored. 
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AI-Accelerated Organic Synthesis 
Prof. Dr. Philippe Schwaller (philippe.schwaller@epfl.ch)  

EPFL, Lausanne, Switzerland 

In organic chemistry, we are currently witnessing a rise in artificial intelligence (AI) 
approaches, which show great potential for improving molecular designs, facilitating 
synthesis and accelerating the discovery of novel molecules. Based on an analogy 
between written language and organic chemistry, we built linguistics-inspired Transformer 
neural network models for chemical reaction prediction, synthesis planning, and the 
prediction of experimental actions. We extended the models to chemical reaction 
classification and fingerprints. By finding a mapping from discrete reactions to feature 
vectors, we enabled efficient chemical reaction space exploration. Intrigued by the 
remarkable performance of chemical language models, we discovered that the models 
capture how atoms rearrange during a reaction, without supervision or human labeling, 
leading to the development of the open-source atom-mapping tool RXNMapper 
(http://rxnmapper.ai/). During my talk, I will provide an overview of the different 
contributions that are at the base of this digital synthetic chemistry revolution. 
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Correlation-based feature selection to identify functional 
dynamics in proteins 

Prof. Dr. Gerhard Stock (stock@physik.uni-freiburg.de)  

Institute of Physics, Uni Freiburg 

The statistical analysis of molecular dynamics simulations requires dimensionality 
reduction techniques, which yield a low-dimensional set of collective variables that in 
some sense describe the essential dynamics of the system. A crucial first step of such an 
analysis is the identification of suitable input coordinates or 'features', such as backbone 
dihedral angles and interresidue distances. To discriminate collective motions underlying 
functional dynamics from uncorrelated motions, the correlation matrix of the input 
coordinates is block-diagonalized using the Leiden community detection algorithm by a 
clustering method. This strategy avoids possible bias due to presumed functional 
observables and conformational states or variation principles that maximize variance or 
timescales. Applications include the functional motion of T4 lysozyme to demonstrate the 
successful identification of collective motion, the folding of villin headpiece to show how 
correlated motions elucidate the folding mechanism, and the allosteric communication in 
PDZ3 domain which is achieved by a fluctuating and cooperative network of interresidue 
contacts. 
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Machine Learning Assisted Photoswitch Design: A Multi-
Property Optimization Perspective 

Robert Strothmann (strothmann@fhi-berlin.mpg.de)  

Fritz-Haber-Institut, MPG, Berlin 

The sheer vastness of chemical spaces poses a daunting challenge to molecular 
discovery through high-throughput screening based on exhaustive sampling. Generative 
models (GMs) are an emerging machine learning (ML) approach that enables a more 
guided discovery. Implicitly learning chemical design rules from large reference data sets 
and suitable descriptors of a targeted functionality, GMs directly propose promising, yet 
diverse candidates. Here we explore the use of GMs for the design of novel molecular 
photoswitches. This class of molecules represents a highly challenging design task, since 
the switching mechanism depends on different properties of the electronic ground and 
excited state. A balance between partly competing design goals is desired. In a first step, 
large general molecular databases are used to train a GM to generate chemically valid 
photoswitches. In a second step, the creation process needs to be conditioned towards 
performant switching capabilities. In the absence of sufficient corresponding 
experimental reference data, this conditioning is based on synthetic first-principles data 
in an iterative distrubtion learning workflow. For that purpose computationally efficient 
descriptors are used in a multi-objective fashion to account for the desired key aspects of 
the switching process 
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Recruiting Soft Actor-Critic Agents for de-novo discovery of 
covalent ligands for modulation of transient pockets 

Jeffrey Vanhuffel (jeffrey.vanhuffel@tu-darmstadt.de)  

Technische Universität Darmstadt 

A protein's activity depends on its different, possible conformational states/ensembles 
between which it may or may not switch over the course of its biological pathway. Some 
(main) states in this ensemble are more prevalent than other (transient) conformations 
but any may cause pathologies. All conformations can have one or more binding 
pockets that may be unique to that specific state that can be targeted by (non-)covalent 
small molecules in order to combat the corresponding illnesses. Reinforcement learning 
models have already been successfully employed in de-novo discovery of non-covalent 
ligands for known protein conformations. This talk will explore combining Molecular 
Dynamics simulations and a Deep Reinforcement Learning model, that generates de-
novo COVALENT ligands as a first-of-its-kind, for discovery and targeting of UNKNOWN 
transient binding pockets. 
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Multi-Fidelity Machine Learning for Quantum Chemistry 
Vivin Vinod (v.vinod@jacobs-university.de)  

Constructor University Bremen 

There has been a great deal of progress in machine learning methods for quantum 
chemistry but there still exists the challenge to the cost of generating the training dataset. 
One cost reduction method is the use of multi-fidelity machine learning. By using data 
from multiple accuracy or fidelity of quantum chemistry calculations, it is possible to 
create sub-models which deliver higher accuracy than the conventional single fidelity 
models. The method delivers low-cost high-accuracy models for quantum chemistry 
properties. For this specific example, it is implemented for the first excited state energies. 
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Electrostatic embedding of machine Learning potentials 
Dr. Kirill Zinovjev (kirill.zinovjev@uv.es)  

Universidad de Valencia, Spain 

We present a version of electrostatic embedding scheme that allows to combine arbitrary 
ML potentials learned in vacuo with molecular mechanics forcefields. This allows to 
accelerate the state-of-the-art QM/MM simulations, such as those used to simulate 
enzymatic catalysis, by replacing the QM method with a cheaper ML potential. The 
scheme relies on physically motivated models of molecular electrostatics and 
polarizability allowing to use only a handful of reference atomic environments for learning. 
We validate the scheme by predicting single point embedding energies for SARS-CoV-2 
protease complex with PF-00835231 inhibitor, resulting in a predicted embedding energy 
RMSE of 2 kcal/mol, compared to explicit DFT/MM calculations. Zinovjev K. Electrostatic 
Embedding of Machine Learning Potentials. J. Chem. Theory Comput. 2023, 
https://doi.org/10.1021/acs.jctc.2c00914 
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Data-driven identification and analysis of the glass 
transition in polymer melts 

Atreyee Banerjee (banerjeea@mpip-mainz.mpg.de) 

Max Planck Institute for Polymer Research. Mainz 

On cooling, the dynamical properties of many polymer melts slow down exponentially, 
leading to a glassy state without any drastic change in static structure. We propose a data-
driven approach, which utilises the high-resolution details accessible through the 
molecular dynamics simulation and considers the structural information of individual 
chains. It clearly identifies the glass transition temperature of polymer melts of 
semiflexible chains. By combining principal component analysis (PCA) and clustering, we 
identify glass transition temperature at the asymptotic limit even from relatively short-
time trajectories, which just reach into the Rouse-like monomerdisplacement regime. We 
demonstrate that fluctuations captured by the principal component analysis reflect the 
change in a chain's behaviour: from conformational rearrangement above to small 
vibrations below the glass transition temperature. We demonstrate the generality of the 
approach by using different dimensionality reduction and clustering approaches. The 
method can be applied to a wide range of systems with microscopic/atomistic 
information. More recently we applied this methodology to all-atom acrylic paint systems. 
Our study reveals the explicit role of backbone and side chain residues to determine the 
glass transition temperature. 
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Reduction pathway of glutaredoxin 1 investigated with 
QM/MM moleculardynamics using a neural network 

correction 
Julian Boeser (julian.boeser@kit.edu) 

Karlsruhe Institute of Technology (KIT) 

Glutaredoxins are small enzymes that catalyze the oxidation and reduction of protein 
disulfide bonds by the thiol–disulfide exchange mechanism. The exact mechanisms are 
not yet fully known. In our study, we investigated a proposed mechanism for the reduction 
of the disulfide bond in the protein HMA4n by a mutated monothiol Homo sapiens 
glutaredoxin and the co-substrate glutathione. The free energy profile of each reaction 
was obtained with hybrid quantum mechanical/molecular mechanical metadynamics 
simulations. For an accurate description, we used semi-empirical density functional tight-
binding method with specific reaction parameters fitted to B3LYP energies of the thiol–
disulfide exchange. In addition we applied a machine learned energy correction that was 
trained on coupled-cluster single double perturbative triple [CCSD(T)]energies of thiol–
disulfide exchanges. The computational cost of the ML correction is comparable to a 
DFTB calculation, but offers a potential for higher accuracy and greater flexibility for as 
somewhat increased computational cost. Due to the extensive phase space sampling, this 
approach includes environmental effects and the ML correction allows to describe 
correlation effects relevant for the thiol–disulfide exchange reaction, which most DFT-
GGA functionals do not capture. 
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Molecular simulations of H1R-ligand binding kinetics 
Mislav Brajković (mislav.brajkovic@h-its.org) 

Heidelberg Institute for Theoretical Studies (HITS) 

Molecular binding kinetic parameters are often essential determinants of the function of 
molecules such as cytokines and hormones, as well of the efficacy of drugs in the non-
equilibrium conditions of living organisms. Because of this, many different in silico 
methods are being developed to compute the molecular association (kon) and dissociation 
(koff) rate constants. Knowing the dissociation rate constant allows for the computation 
of a drug residence time (τ=1/koff) which is an important factor in drug design because it 
gives insight on how long will a particular drug exert its effect. A successful computational 
approach for computing the relative molecular residence times is the molecular 
dynamics-based τRAMD method. We used the τRAMD method to simulate the 
dissociation process and to compute the relative residence times (dissociation rates) of 
different antagonists of the histamine-1-receptor (H1R) which is a validated target for the 
treatment of allergies and some forms of gastric acid related conditions. Relative 
residence times of compounds calculated with τRAMD show good correlation with the 
experimental values. The results demonstrate that  τRAMD is adequate and accurate 
method for prediction of future drug candidates. 
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KIMMDY 2.0 -- A Kinetic Monte Carlo Reactive Molecular 
Dynamics Framework 

Jannik Buhr (jannik.buhr@h-its.org) 

HITS 

Forcefield based molecular dynamics simulations allowed us to reach biologically 
relevant timescales and system sizes. A fundamental limit of this molecular mechanics 
approach is a lack of reactivity. We present a framework for combining classical 
molecular dynamics simulations with a kinetic Monte Carlo approach to bridge timescales 
and allow reactions to occur within a simulation. It is implemented as a user-friendly, 
extensible python module based on the open-source high-performance molecular 
dynamics software suit GROMACS. This poster focusses on making the necessary 
changes to topologies and forcefield parameters in a modular way. 
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Discovering Long-term Polymer Dynamics with Generative 
Deep Neural Networks 

Gian-Michele Cherchi (g.m.cherchi@gmail.com) 

Simatlab, University Clermont-Auvergne 

When simulating soft-matter systems, polymer melts can be challenging because 
complicated sub-diffusive patterns arise when increasing the chain length; nevertheless, 
these regimes are transitory, and asymptotically one observes normal diffusion. Reaching 
these timescales remains expensive and one of the solutions often adopted is coarse-
graining. In this work, the objective is using short-term non-markovian molecular 
dynamics trajectories to extrapolate long-term diffusion behaviour. We employ generative 
a Machine learning techniques to model the conditional distribution of single polymers’ 
normal modes, in an omopolymer system. This gives one the chance to train a neural 
network with an additional Score-Based SDEs regularization, which enhances its learning 
capabilities. Centre of mass dynamics, displaying transient anomalous diffusion, is then 
modelled with a Generalized Langevin Equation having an integrable kernel, which, in the 
zero-mass limit, yields a solution corresponding to a set of stochastic differential 
equations involving single polymer normal modes. Future research perspectives include 
evaluating the generalization capabilities of the model conditional to different 
temperatures or chain lengths. An open problem remains understanding the effect of the 
score-based regularization and exploiting it to generate a higher fidelity dynamics. 
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COMPUTATION OF UNBINDING RATES AND MECHANISMS IN 
PROTEIN-PROTEIN SYSTEMS 

Giulia D’Arrigo1, Daria B. Kokh1, Ariane Nunes-Alves1,2, Rebecca C. Wade1,3 

(giulia.darrigo@h-its.org) 

1Heidelberg Institute for Theoretical Studies, 2Technical University of Berlin, 3Center for 
Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for 

Scientific Computing (IWR) 

The dissociation rate, or its reciprocal, residence time, is crucial for determining the 
duration and the biological effect of biomolecular interactions. Its prediction is key for 
better understanding protein-protein interactions (PPIs), drug targets for numerous 
diseases, and for the design of high-affinity modulators. However, the conventional 
molecular dynamics simulation approaches are limited to a short timescale hampering 
the estimation of the residence time (typically ranging from minutes to hours). After the 
extensive application on protein-small molecule systems, the use of τ-RAMD (Random 
Acceleration Molecular Dynamics) for estimating protein-protein dissociation rates is here 
presented. With τ-RAMD, the unbinding event is observed within the nanosecond 
timescale thus enabling the fast computation of the relative residence time. We have 
assessed the methodology on a diverse set of protein-protein systems showing good 
agreement between the computed and experimental data. In addition, the combination of 
τ-RAMD with the MD-IFP (Interaction Fingerprint) analysis allowed the investigation of the 
dissociation process easing the detection of the molecular hot-spots to target to 
modulate specific interactions. Our results demonstrate the applicability of τ-RAMD for 
computing protein-protein dissociation rates and for being a valuable tool for modelling 
biomolecular kinetics, as well as for assisting in the design of PPIs modulators. 
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High accuracy neural network predictions for sulfur and 
phosphor reactions in solution 

Lena Eichinger, Christian Schmidt (lena.eichinger@kit.edu) ,(christian.schmidt@kit.edu) 

Karlsruhe Institute of Technology (KIT) 

Saving computational cost on QM/MM calculations without losing accuracy is made 
possible by the use of neural networks (NN). Highly polarizable atoms like sulfur or 
phosphor, due to their ability to access d-orbitals, pose a challenge for established NN. 
Our approach aims towards describing reactions like thiol-disulfide exchange reactions 
and phosphorylation in solution with high accuracy while maintaining minimal 
computational cost. 
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Prediction of Fluorophore Excitation Energies in Complex 
Surroundings 

Manuel Enns (manuel.enns@student.kit.edu) 

KIT 

Certain dyes show promising sensitivities to their surroundings resulting in a significant 
fluorescence shift. In order to study this shift we made a neural network capable of 
predicting the emission spectrum of a fluorophore given the geometry and the 
electrostatic potential. The model is trained in several solvents but should be able to work 
in different surroundings too. Therefore the model is tested by looking at a mutated 
glucose binding protein that undergoes a conformational change upon binding. Such a 
system could be used as a glucose measuring device. 
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Exploration of redox properties in chemical space 
Rostislav Fedorov (rostislav.fedorov@h-its.org) 

Heidelberg Institute for Theoretical Studies (HITS) 

Redox potential plays a crucial role in many applications, and accurately estimating it can 
be time-consuming and resource-intensive. In this study, we present a novel method for 
fast estimation of redox potential using message passing neural networks (MPNN). By 
training on an OMEAD dataset, we achieved the lowest mean absolute error (MAE) among 
existing approaches, reported in the literature, making our method state-of-the-art. 
Furthermore, we combined our MPNN approach with an evolutionary algorithm to explore 
the vast chemical space for potential good candidates. Our method has the potential to 
greatly accelerate the discovery of new catalysts and materials for redox reactions, 
ultimately contributing to the development of more efficient and sustainable chemical 
processes. 
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Structural prediction of transmembrane peptide-protein 
interaction and application to a potential peptide 

therapeutic 
Manuel Glaser 1,5, Michael Egger2,3,5, Lukas Jarosch1, Rafael Salazar1, Tommaso 

Bartoloni1,5, Julia Ritterhoff2,3,5, Patrick Most2,3,5, Rebecca C. Wade1,4,5 (manuel.glaser@h-
its.org) (tommaso.bartoloni@h-its.org) 

1Heidelberg Institute for Theoretical Studies (HITS); 2Division of Molecular and 
Translational Cardiology, Department of Medicine III, Heidelberg University Hospital; 

3German Center for Cardiovascular Research (DZHK); 4Center for Molecular Biology of 
Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for 

Scientific Computing (IWR), 5Informatics for Life (I4L) consortium, Klaus Tschira 
Foundation 

Modulating membrane-embedded protein-protein interactions is an attractive point of 
drug application. Designing transmembrane-spanning peptides that can regulate 
transmembrane domain interactions and thus influence the function of membrane 
proteins, such as ATPase pumps, therefore holds promise for therapeutic applications. 
Efficient structure prediction of these interactions could support the design process, 
however, it is complicated by the presence of both an aqueous and a lipid bilayer 
environment in the respective systems. Correspondingly, there is no out-of-the-box 
approach to tackle the docking of potentially membrane-insertable peptides to 
transmembrane proteins. We addressed this docking problem by customizing a pipeline 
that employed global rigid-body docking (ClusPro) followed by semi-flexible refinement in 
a membrane environment (Rosetta MPDock), which we validated on experimentally 
determined complexes of the transmembrane calcium ATPase SERCA bound to 
transmembrane miniprotein regulators. We also applied the pipeline to generate models 
of the peptide drug candidate S100A1ct in complex with its target SERCA2a. S100A1ct is 
a peptide derived from the C-terminal helix of the calcium sensor protein S100A1 and 
conveys positive effects in cardiomyocytes, e.g., by increasing SERCA2a activity. Based 
on our results, we hypothesize that its mechanism of action could be explained by 
perturbating the binding of the SERCA miniprotein inhibitor phospholamban. 
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Automated Parameterization for Reactive Molecular 
Dynamics Simulations 

Eric Hartmann (eric.hartmann@h-its.org) 

HITS 

In molecular dynamics (MD), classical force fields have enabled remarkable insights into 
a wide range of molecular systems. In these force fields, atoms are assigned an atom 
type, and parameters are inherited from this atom type for the duration of the simulation. 
However, reactions or other events may lead to a change in the chemical environment of 
an atom, necessitating changes to its parameters. Several methods have been 
established to deal with changes in an atom's environment. Parameters can be changed 
dynamically or forces can be evaluated using an entirely different potential, for example 
neural network potentials. Here, we extend the recently developed hybrid Kinetic Monte 
Carlo/ MD scheme KIMMDY to automatically reparameterize the molecular system in 
between simulations. To achieve this, changes to the connectivity are detected by direct 
chemical perception, parameter changes are applied to the simulation files and a smooth 
transition scheme between the parameters is employed. This approach is extensible to 
further reaction mechanisms which can be added to KIMMDY by supplying a function (e.g. 
a neural network) that determines the rate for a reaction given a system configuration. 
Toy peptide systems are used to demonstrate the simulation of several consecutive 
reactions without intervention while maintaining highly accurate parameters. Thus, the 
impact of a given reaction on the relative probability of the ones that follow it can be 
studied. One application case is the study of mechanoradical migration pathways in load-
bearing proteins like collagen. 
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Exciton transfer simulations in light harvesting complexes 
accelerated by machine learning 

David Hoffmann (david.hoffmann@kit.edu) 

KIT, Institut für Physikalische Chemie, Theoretische Chemische Biologie 

Nature has developed highly efficient photosynthetic units in the course of evolution. 
Light-harvesting (LH) complexes are responsible for collecting and transmitting the 
energy of sunlight in the form of excitons. Photoactive pigments are arranged within a 
protein framework, that ensures the specific alignment of the pigments leading to 
optimized energy transfer. Non-adiabatic molecular dynamics (NAMD) methods, such as 
trajectory surface hopping, can be used to simulate the transfer of excitons between 
different pigments. The motion of excitons results from the coupling of nuclear and 
electronic degrees of freedom. Due to the size of biological LH complexes, such 
simulations are extremely challenging. We aim to integrate machine learning techniques 
to replace costly quantum-chemical calculations. Here, we present simulations of exciton 
transfer in the light-harvesting complex II (LH2) of purple bacteria, which are examined in 
terms of underlying transfer mechanisms, (de)localization and transfer timescales. Neural 
network models are trained for the prediction of transfer Hamiltonian elements using 
reference data from semi-empirical time-dependent long-range corrected density 
functional tight binding (TD-LC-DFTB). For the prediction of excitation energies, the 
models take into account the specific environment in the form of the electrostatic 
potential induced on the individual atoms of the pigment molecules. 
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Scalable Machine Learning for Open System Quantum 
Dynamics 

Yannick Holtkamp (yholtkamp@constructor.university) 

Constructor University Bremen 

To understand many processes in nature involving, for example, energy or electron 
transfer, the theory of open quantum systems needs to be involved. A prime example in 
this direction is the transfer of energy from an absorbed photon to the reaction center 
within the framework of photosynthesis. For larger systems, an accurate description of 
the underlying quantum dynamics is still a formidable task and, hence, approaches 
employing machine learning techniques have been developed and tested to reduce the 
computational effort of accurate dissipative dynamics. A downside of previous machine 
learning methods is that they require numerical expensive training data for systems of the 
same size as the ones they will be employed for, making them unfeasible to use for larger 
systems where those calculations are still too expensive. Here, we will introduce a new 
method that is implemented as a machine-learned correction term to the so-called 
Numerical Integration of Schrödinger Equation (NISE). We will show that this term can be 
trained on data from small systems, where the computationally expensive methods are 
still feasible to compute. Then the NISE with the new machine learned correction can be 
used to determine the dissipative quantum dynamics for larger systems. 
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Candidate free active learning for exited state energies 
Matthias Holzenkamp (mholzenkamp@constructor.university) 

Constructor University Bremen 

To substitute the high number of expensive ab initio calculations to build a potential 
energy surface, machine learning models which are trained only on a few samples can be 
used. Active learning strategies allow choosing the training samples in a way as few 
samples as possible are needed to reach a certain accuracy. As Gaussian process 
regression does not only provide the posterior mean for the prediction but also the 
posterior variance, this can be used to find geometries with high uncertainty. We follow 
an approach where new training samples are found via maximization of the variance, 
weighted with a function that restricts the configuration space, in which to search, in a 
certain way. 
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Anharmonic Correction to the Adsorption Free Energy by 
Machine Learned Force Field-based Thermodynamic 

Integration 
Thanh-Nam Huynh (thanh-nam.huynh@kit.edu) 

KIT 

An accurate description of adsorption process is of paramount importance for 
understanding heterogeneous catalytic process. However, the current approaches of 
adsorption free energies calculations either provide insufficient entropic contributions or 
are very complex and/or computationally expensive. The harmonic approximation (HA), 
the most frequently used method thus far, is prone to significant deviations [1]. There is 
need in method that is able to recover the free energy contributed from a system’s 
anharmonicity for a better description of free energy. Herewith, we present a new 
approach, in which machine learned force field (MLFF) is used in place of DFT in the most 
time-consuming step of λ-path thermodynamic integration (MLFF-based λ-TI) to calculate 
the anharmonic contribution to free energy. The validation test on ethane system shows 
excellent agreement with DFT λ-TI and semi-analytic results. The approach is performed 
on an adsorbing system of interest, namely OH@Pt(111). The computed anharmonic 
correction for this system gives a significant value of -0.250 eV, as high as roughly 12.5% 
of the harmonically approximated adsorption free energy. Therefore, the MLFF-based λ-
TI method could be promising to reach accurate free energies of adsorption processes, 
which could then provide more insight into the reaction mechanism of surface reactions. 
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Fragmentation-based molecular representation suitable for 
ML/DL applications 

Stiv Llenga (stiv.llenga@h-its.org) 

Heidelberg Institute for Theoretical Studies (HITS) 

The chemical space of molecules is infinite, but chemists' ability to study every molecule 
in the universe is limited. The goal of machine learning (ML) in chemistry is to find patterns 
in this infinite space, discover new compounds, identify which compound or class of 
compounds has a specific property, is stable under certain conditions, etc. The manner in 
which the chemical space is built is crucial to accomplish these tasks and in turn depends 
strongly on molecular representation. The matrix of fragment similarity representation 
(MFSR) is a new ML-ready fragmentation-based technique for mapping the chemical 
space of compounds composed of specific building blocks. Most industrially and 
biologically relevant macromolecules are formed as a combination of finite building 
blocks (e.g., all proteins are a combination of just 20 aminoacids), and our technique can 
predict their properties in less than a fraction of a second and with the quantum-chemcial 
accuracy. In this study, MFSR is applied to two datasets of N-heteropolycycles, N-HPC1 
and N-HPC1x, to predict, analyse, and rationalise their properties using unsupervised and 
supervised deep learning techniques. In contrast to other molecular representations, 
MFSR allows even the most entangled deep learning models to be decodable in a form 
that chemists can easily understand. This is because the input to an ML model used in 
MFSR is simply the similarity of a specific building block to the parent compounds 
multiplied by the property of the building block. 
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Simulation at molecular and mesoscopic level and its 
validation through X-ray and neutron scattering 

Arnab Majumdar (arnab.majumdar@hereon.de) 

Helmholtz Zentrum Hereon, Garching, Germany 

With the advent of new technologies, it has been possible to design new materials through 
theoretical analysis and simulation. However, these simulations have to be validated by 
experiments. In this work, we develop a method to validate the structural features in 
continuum simulations directly on the mesoscopic level with X-ray and neutron scattering 
experiments. The workflow to compare atomistic computer simulations to scattering 
patterns is well established: the scattering amplitude of individual atoms is summed, 
whose positions are obtained from the simulation. This approach fails for larger 
mesoscopic structures due to the unrealistic computation time required to generate the 
simulations and scattering pattern on a mesoscopic scale with atomic resolution. We 
developed a methodology that calculates scattering patterns from a continuum 
simulation like phase-field modeling, where the material description is continuous instead 
of a collection of atoms. The approach is validated with simple structures and gradually 
applied to more complex structures. The long-term goal is to use this technique for the 
simulation of hydrogen storage materials and validation of the simulations with scattering 
data. 

Stand № 17 

  



 46 

What does the biosynthetic gene cluster say? Understanding 
biosynthetic gene clusters with protein language models 

Tatiana Malygina (merlettaia@gmail.com) 

Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken 

Many organisms, such as bacteria, fungi, and plants, produce intricate chemicals that are 
not needed for their growth and reproduction, and thus are called secondary metabolites 
or natural products (NPs). NPs are a rich source of drugs, with most antibiotics being 
derivatives of NPs. In a producer organism, NPs are synthesized by a set of enzymes 
encoded by genes that often lie near each other on the chromosome and are called a 
biosynthetic gene cluster (BGC). Despite the clinical importance that some NPs have, only 
a small number of naturally-occuring BGCs are explicitly described. From the natural 
language processing (NLP) point of view, in terms of the number of samples, the existing 
collections of BGC sequences can be considered a low-resource language corpus. A 
common approach to tackle such datasets is to transfer an existing model trained on a 
high-resource language dataset from one language domain to another using transfer 
learning. A natural high-resource dataset for BGCs would be all protein sequences. Several 
different protein language models (pLM) trained with large collections of sequences are 
available nowadays. In this work, we use them employing transfer learning to explore the 
meaningfulness of representations of BGCs regarding the chemistry of expressed NPs. 
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Manifold Learning for Boltzmann Generators 
Marcel Meyer (marcel.meyer@h-its.org) 

Heidelberg Institute for Theoretical Studies 

Molecular dynamics are used to sample equilibrium states but require large 
computational resources for complex systems. Generative models, such as Boltzmann 
generators promise to accelerate sampling, but creating generative models of sufficient 
quality remains challenging. Domain knowledge tells us that reasonable data points have 
to lie on a manifold of much lower dimension than the ambient space the data is 
embedded in. This manifold is determined by many constraints: Bond lengths have to be 
respected, chiralities are fixed, etc. Manifold learning flows, a recently developed class of 
generative models, have been developed with cases like this in mind, but have not yet been 
applied to molecular conformer generation. Here, we build manifold learning architectures 
that split the learning task in two: a first neural network learns the structure of the data 
manifold, representing each data point in a lower dimensional space. a second neural 
network learns to estimate the density on this manifold. If we use normalizing flows for 
both networks, we recover a generative model with much fewer parameters than a flow 
working in the ambient space directly. 
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Machine-Learned Potentials for the Simulation of Hydrogen 
Atom Transfer  

Marlen Neubert (marlen.neubert@kit.edu) 

Institute of Theoretical Informatics, KIT 

Computer simulations are becoming an important tool for solving complex chemistry, 
physics, and materials science problems. Machine-learned potentials are able to 
accelerate simulations of systems on an atomic level. They can therefore be seen as a 
computational microscope. The wide range of application areas includes biological 
systems such as proteins and processes therein. In this poster, we will present our 
research on the development of graph neural networks and active learning approaches 
for the training of machine-learned potentials, with application to describe chemical 
reactions, in particular hydrogen atom transfer reactions in collagen. Challenges include 
the systematic and automated generation of data, coupled with the training of machine 
learning models in an iterative way. Both neutral and saturated molecular systems as well 
as radicals need to be covered by the training data and modeled by the graph neural 
network. Exploration algorithms directly coupled with the active learning model can help 
to find relevant transition states and thus energy barriers. This project is part of the 
SIMPLAIX project (Subproject 1) as well as the HIDSS4Health graduate school. 
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Quality In, Quality Out: Computing Accurate Redox Potential 
to Train Neural Networks 

Anastasiia Nihei (niheianastasiia@gmail.com) 

Heidelberg Institute for Theoretical Studies (HITS) 

Redox (oxidation/reduction) potentials determine utility of organic molecules in practical 
applications ranging from rechargeable batteries to enzymatic catalysis. In this project, 
we establish an accurate ab initio procedure for computing redox potentials of organic 
molecules, which will subsequently be used in machine learning. We test the ability of 
several density functional theory methods – PBE0, M062X, and B3LYP – in conjunction 
with various continuum solvent models for acetonitrile within the framework of the Born-
Haber thermodynamic cycle to reproduce experimentally measured potentials. Among the 
three methods, M062X best reproduces the experimental data (R2 = 0.935), reaching 
chemical accuracy (mean absolute error, MAE, equal to 0.21; for experimental 
measurements, MAE = 0.25). In this manner, highly accurate redox potentials can be 
computed and fed into a graph neural network, ensuring quality predictions for new 
systems. 
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Electronic properties of modeled Spiropiran-based Metal-
Organic Frameworks 

Helmy Pacheco Hernández (helmy.hernandez@kit.edu) 

Karlsruhe Institute of Technology 

Materials that possess photoswitchable electronic properties and the ability to undergo 
reversible changes in conductance are highly desirable. Metal-organic framework (MOF) 
films, functionalized with photoresponsive linkers based on spiropyran, have 
demonstrated the potential to switch conduction by light with large on-off ratios. The 
current process for synthesizing MOF materials is laborious and could benefit 
significantly from the implementation of in silico molecular design. In this study, we have 
designed photoswitchable Metal-Organic Frameworks (MOFs) that incorporate 
spiropyran photoswitches at precise positions. By implementing multiscale modeling and 
automated workflow protocols, we have characterized four MOF based on Spiropyran 
linkers and explored their potential for photoswitching properties. Through ab initio 
calculations of the electronic coupling between molecules in the MOFs, we have 
demonstrated that lattice distances significantly affect the photoswitching of conduction 
between spiropyran- and merocyanine-based MOFs upon light absorption. Merocyanine 
exhibits higher molecular flexibility and additional intermolecular π-π interactions between 
linkers, resulting in an increase in electronic coupling. This increase leads to on-off ratios 
in the order of 10^4 for conduction switching. This study offers valuable information for 
designing smart materials with large switching conduction ratios. 
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PepAIsim: combining AI and molecular simulations for 
anticancer peptide and peptidomimetic design 

Giulia Paiardi1,2, Elke Burgermeister E.3, Rebecca C. Wade1,2 (giulia.paiardi@h-its.org) 

1Zentrum für Molekular Biologie (ZMBH) Heidelberg University; 2Heidelberg Institute for 
Theoretical Studies (HITS); 3Universitätsmedizin Mannheim, Medical Faculty Mannheim, 

Heidelberg University 

Anticancer peptides (APs) represent a promising class of therapeutic molecules. The 
development and identification of APs are time-consuming and expensive in traditional 
wet-lab-based approaches. Computational studies of protein-peptide interactions can 
speed up the process. However, several shortcomings hamper their computational 
optimization. Peptides are more flexible than proteins, making it more difficult to properly 
map their conformational landscape, predict their interactions and function, and design 
mimetics. Therefore, we aim to implement a computational approach, combining machine 
learning (ML) with physics-based simulations to investigate protein-peptide interactions 
and predict their molecular mechanisms to ultimately design optimized anticancer 
peptides. As a case study, we focus on the potential treatment of gastrointestinal cancer 
with peptides that mimic the effect of the tumor suppressor Docking protein-1 (DOK1). 
Here, we are investigating the binding mode and mechanisms of DOK1-peptide, derived 
from the DOK1 protein, to the two human proteins HAKAI and PPARγ. Our results show 
that, despite sharing common binding residues, DOK1-peptide interacts with its target 
proteins via different binding modes. We identify direct mechanisms by which DOK1-
peptide can prevent the above-mentioned protein-protein interactions. Our results lay the 
basis for the ML-driven optimization of DOK1 peptide derivatives toward new anticancer 
therapeutics. 
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4th Generation HDNNP for QM/MM Calculations 
Lukas Petersen (lukas.petersen@kit.edu) 

Karlsruhe Institut of Technology 

High-dimensional neural network potentials (HDNNPs), developed by Behler and Parinello, 
apply atom-centered symmetry functions (ACSFs) as descriptors for molecular systems. 
This approach becomes problematic in condensed-phase reactions due additional 
element types and sampling of the phase space. A QM/MM-like approach, where the 
reaction center and the environment are handled separately, would be desirable. This 
could be achieved by including the electrostatic potential caused by environment, typically 
solvent or protein-backbone, in the model by considering the electrostatic interaction 
between the two zones during the CENT scheme of the 4th Generation HDNNP. The model 
reaction we consider is the thiol-disulfide exchange, which occurs dynamically in proteins 
to form new disulfide bridges. This reaction is especially ambitious due to the high 
polarizability of the sulfur atoms. 
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Unveiling patterns in nonadiabatic molecular dynamics data 
with machine learning: the ULaMDyn program 

Max Pinheiro Junior (max.pinheiro-jr@univ-amu.fr) 

Aix-Marseille University 

Trajectory-based nonadiabatic molecular dynamics (NAMD) are as robust data 
generators. Owing to the high dimensionality of NAMD data, it is challenging to find key 
active coordinates driving the molecular system towards critical regions of the potential 
energy surfaces, where chemical transformations may occur. Also, the myriad of possible 
reaction pathways accessible in NAMD adds an extra layer of difficulty to the data 
exploration problem. Unsupervised machine learning (ML) can bring an automated 
solution for the in depth analysis of NAMD data, facilitating the interpretation and 
understanding of the underlying photo-dynamical processes. To contribute to this 
solution, we have developed the Unsupervised Learning Analysis of Molecular Dynamics 
(ULaMDyn) program that provides a complete data analysis pipeline, going from data 
curation to molecular representations, dimension reduction, and clustering analysis. The 
unsupervised learning methods implemented in ULaMDyn aim to surpass existing barriers 
for chemists to extract insights from NAMD simulations regardless of the complexity of 
the molecular system under study. In this work, I will present the theoretical aspects of 
unsupervised learning, showcasing applications of dimensionality reduction and 
clustering techniques for analyzing NAMD data. ULaMDyn will assist chemists in 
understanding photochemical phenomena without requiring prior knowledge of the 
underlying chemical reaction mechanisms. 
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How collagen is designed to tame its radicals 
Benedikt Rennekamp (benedikt.rennekamp@h-its.org) 

Heidelberg Institute for Theoretical Studies (HITS) 

Collagen is a force-bearing, hierarchical structural protein important to all connective 
tissue. In tendon collagen, high load even below macroscopic failure level creates 
mechanoradicals by homolytic bond scission, similar to polymers. The location and type 
of initial rupture sites critically decide on both the mechanical and chemical impact of 
these micro-ruptures on the tissue, but are yet to be explored.  We here use scale-bridging 
simulations to determine breakage points in collagen: In regular Molecular Dynamics 
(MD) simulations, covalent bonds are predefined and reactions cannot occur. To 
circumvent these limitations, we present our previously developed reactive Kinetic Monte 
Carlo / Molecular Dynamics (KIMMDY) scheme. Here, bond rupture rates are calculated 
based on the interatomic distances in the MD simulation and then serve as an input for a 
Kinetic Monte Carlo step. Recently, we have improved upon its accuracy with new Bond 
Dissociation parameters obtained by high-level quantum mechanical calculations.  We 
find collagen crosslinks, as opposed to the backbone, to harbor the weakest bonds, with 
one particular bond in trivalent crosslinks as the most dominant rupture site. We identify 
this bond as sacrificial, rupturing prior to other bonds while maintaining the material's 
integrity. Also, collagen's weak bonds funnel ruptures such that the potentially harmful 
mechanoradicals are readily stabilized. Our results suggest this unique failure mode of 
collagen to be tailored towards combatting an early onset of macroscopic failure and 
material ageing. 
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Analysis of transient pockets in proteins using TRAPP 
Jui-Hung Yuan, Sungho Bosco Han, Stefan Richter, Daria B. Kokh and Rebecca C. Wade 

(stefan.richter@h-its.org) 

Heidelberg Institute for Theoretical Studies 

TRAnsient Pockets in Proteins (TRAPP) is a tool designed to aid the discovery of 
molecules that bind in transient or cryptic subpockets in proteins. TRAPP is not designed 
to identify all of a protein's binding pockets, but rather to trace changes in the spatial and 
physicochemical properties of a specified pocket in a protein that may arise due to the 
protein's flexibility. It includes tools designed to efficiently generate and analyse binding 
site motions and explore protein cavity dynamics. The pocket conformations can be 
characterized by their physicochemical and sequence properties as well as by druggability 
indices. The druggability indices have been derived using a logistic regression model and 
a convoluted neural network trained using the Non-Redundant Druggable and Less 
Druggable (NRDLD) dataset augmented by a PDBbind-based dataset (DaPB). These 
models allow the selection of frames in molecular dynamics trajectories with potentially 
druggable protein conformations. TRAPP is available as webserver (https://trapp.h-
its.org) as well as standalone tool.  

Yuan J, Han SB, Richter S, Wade RC, Kokh DB (2020). Druggability Assessment in TRAPP 
Using Machine Learning Approaches, J. Chem. Inf. Model. 60(3):1685-1699 Stank A, 
Kokh DB, Horn M, Sizikova E, Neil R, Panecka J, Richter S, Wade RC (2017). TRAPP 
webserver: predicting protein binding site flexibility and detecting transient binding 
pockets., Nucleic Acids Research 45(W1):W325-W330 Kokh DB, Richter S, Henrich S, 
Czodrowski P, Rippmann F, Wade RC (2013). TRAPP: A Tool for Analysis of Transient 
Binding Pockets in Proteins, J. Chem. Inf. Model. 53(5):1235-1252 57 

Stand № 27 

  



 56 

Designing a machine-learned protein force field 
Leif Seute (leif.seute@h-its.org) 

Heidelberg Institute for Theoretical Studies 

In traditional Molecular Mechanics (MM) force fields, a finite set of hand-crafted chemical 
perception rules is used to determine parameters for a given molecule. Building upon work 
from Chodera et al., we design a protein force field in which the hand-crafted rules are 
replaced by a machine learning approach using graph neural networks. Besides potentially 
increasing accuracy of legacy protein force fields, our approach allows customized fine-
tuning of the force field, making it applicable to rather exotic molecules like protein 
radicals while keeping the computational efficiency of MM potentials. 
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Machine Learning the Fluoride Ion Affinity of p-Block 
Element-based Lewis Acids 

Lukas Sigmund (lukas.sigmund@aci.uni-heidelberg.de) 

Ruprecht-Karls-Universität Heidelberg 

The fluoride ion affinity (FIA) is among the most common scales to quantify the strength 
of Lewis acids in a global sense. It is usually obtained with quantum chemical 
computations. For a single accurate solution-phase FIA, it needs twelve separate 
calculations, which hampers the fast computational exploration of new Lewis acids. 
Therefore, we developed a statistical model for the prediction of FIAs. A dataset 
constituting 15 different p-block elements as Lewis acidic centers combined with a wide 
range of mono- and polydentate substituents was compiled. The dataset contains over 
7000 datapoints and spans a FIA range of around 550 kJ/mol. With that, a gradient-
boosted decision trees regressor was trained. The feature space was constructed only 
with atom connectivity graph-based data from the Lewis acid and its fluoride adduct. Any 
kind of 3D information was not included, which allows FIA predictions with SMILES strings 
or analogous structural encodings. The features were organized in atom shells stratified 
around the central Lewis acidic atom. The model predicts the FIA of unseen compounds 
from the dataset with a MAE of 13 kJ/mol (R2=0.94). For literature-known test Lewis acids 
the accuracy is slightly reduced (MAE of 18 kJ/mol, R2=0.91). 
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How a Stretching Force Differently Destabilizes Chemical 
Bonds on a Protein Backbone 

Daniel Sucerquia (daniel.sucerquia@h-its.org) 

Heidelberg Institute for Theoretical Studies 

When subjecting a protein chain to extreme pulling forces, bonds in the stretched 
backbone ultimately break. Predicting such ruptures can help to understand failure of 
protein materials. As a most simple assumption, a protein backbone can be considered 
as a series of harmonic springs each of which carries the same force, and they only differ 
in their thermodynamic stability. However, proteins are more complex than that and force 
will distribute across the various degrees of freedoms in the peptide, largely depending on 
the chemical environment. We here study the changes of energy stored in the degrees of 
freedom of molecules at quantum level of accuracy using JEDI (T. Stauch and A. Dreuw, 
Chem. Rev. 116, 2016). JEDI assesses the distribution of energies in stretched molecules 
using density functional theory and a harmonic approximation around optimized 
conformations. We so far have tested this method in chains of amino acids consisting of 
alanines, glycines, and prolines, and their combinations. We observe a linear increase in 
energies per degree of freedom including bonds, angles, and dihedrals, during stretching, 
and proline to show an energy distribution distinct from the other amino acids due to the 
ring structure. Data from QM and JEDI calculations of a large set of small peptides will aid 
to predict the energy distribution in larger systems using Machine Learning, for example 
for allowing bond rupture during classical Molecular Dynamics simulations. 
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Multiscale simulation of Cytochrome P450 electron transfer 
complexes : The reduction of CYP17A1 and its implications for 

the regulation of human sex hormone biosynthesis 
Jonathan Teuffel1,2, Goutam Mukherjee1,3,4, Sungho Bosco Han1 and Rebecca C. 

Wade1,2,3,4 (jonathan.teuffel@h-its.org) 

1Heidelberg Institute for Theoretical Studies; 2Faculty for Engineering Sciences, 
Heidelberg University; 3Zentrum für Molekulare Biologie (ZMBH), Heidelberg University; 

4Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University. 

The cytochrome P450 17A1 (CYP17A1) is a central node in the steroid hormone synthesis 
metabolic network and is one of a subgroup of cytochrome P450 enzymes that requires 
interaction with two redox proteins: cytochrome b5 and NADPH cytochrome P450 
oxidoreductase. We applied a multiscale simulation protocol to investigate how human 
cytochrome P450 17A1 (CYP17A1) receives electrons from these two different redox 
proteins upon protein-protein complex formation. Extensive molecular dynamics 
simulations were run, generating ensembles that were analysed to yield information on 
the structural rearrangements of the redox partners upon complex formation and on 
electron-transfer kinetics. Our simulations indicate that both redox proteins can transfer 
electrons at a similar rate but via different pathways that involve non-aromatic residues 
and the protein backbone. We also found that the binding modes of both reductases are 
altered upon embedding the complexes into a phospholipid bilayer and that the binding of 
the reductases in turn alters the orientation of CYP17A1 relative to the membrane plane. 
Our findings show how association to different redox proteins differentially impacts the 
active site accessibility and the activity of CYP17A1 through conformational 
rearrangements. Comparison of the computed electron transfer pathways with those for 
other cytochrome P450 enzymes will provide a basis for deriving a machine learning 
model to predict the sequence dependence of cytochrome P450 electron transfer 
kinetics. 
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The COMPAS Project: Expanding into peri-Condensed 
Polybenzenoid Hydrocarbons 

Alexandra Wahab (awahab@org.chem.ethz.ch) 

ETH Zürich 

Polycyclic aromatic systems are one of most prevalent types of compounds in nature and 
are important in many fields in chemistry. We recently introduced the COMPAS project: a 
COMputational database of Polycyclic Aromatic Systems, the first methodically curated 
database for such systems. The first installment of this project focused on cata-
condensed polybenzenoid hydrocarbons (PBHs). In the current work, we present the 
second installment, where we explore the chemical space of peri-condensed PBHs. We 
constructed two data sets containing optimized ground-state structures and molecular 
properties: COMPAS-2x (∼40k molecules with up to 11 rings, calculated with GFN2-xTB) 
and COMPAS-2D (∼9k molecules with up to 10 rings, calculated at the CAM-B3LYP-
D3BJ/aug-cc-pVDZ level). Herein, we describe the workflow of data generation, the data 
curation pipeline, and the information available within the data sets. We compare the two 
types of computations and detail the structure–property relationships revealed by the 
data analysis. The data and insights gained can drive rational design of novel functional 
polycyclic aromatic molecules with applications in, e.g., organic electronics, and can 
provide a basis for additional data-driven machine- and deep-learning studies in chemistry, 
which we previously showed with our first installment of the COMPAS database. 
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Active Learning for Potential Energy Surface Simulation 
Chen Zhou (chen.zhou@kit.edu) 

Karlsruhe Institute of Technology 

The accurate and efficient exploration of chemical space is essential for rational 
compound design and production in the field of chemical, materials and pharmaceutical 
industries. This has led to growing interest within the scientific community of utilization 
of machine learning in molecular dynamic simulations, which are often prohibitive for 
large molecules or long time scales with classic quantum calculation methods. Here we 
introduce an active learning workflow that efficiently simulates the potential energy 
surface of a 38-atom molecule with 6 excited electronic states. The workflow takes 
advantage of a fully connected neural network, enables both data and task parallelism on 
computer clusters with Message Passing Interface, and achieves high accuracy on 
energy/force prediction (R2 = 0.999 and 0.998 respectively). With the flexible architecture, 
we expect this active learning workflow to be readily extensible towards other oracles and 
machine learning models. 
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